Overview of Fermilab "SiteFiller" and LEP3

Eliana Gianfelice and Tanaji Sen (Fermilab) Snowmass Agorà on e+e- circular colliders January 19, 2022

Following the discovery of the Higgs at LHC, there has been a renewed interest for a Higgs factory, in particular e^+e^- colliders.

In 2012 Fermilab hosted a workshop on Accelerators for a Higgs Factory (HF2012) with 35 contributions by scientists from Asia, Europe, Russia and US.

e^+e^- collider rings

Dreaming big...

- ullet DLEP: a 50 km e^+e^- would allow doubling the current for the same SR power
- ullet TLEP: a 80 km e^+e^- would allow 3 times larger current for the same SR power
- SuperTRISTAN (40 or 60 km)
- VLLC in the 233 km VLHC tunnel, the larger ancestor of FCC.

Dreaming "small" ...

- Fermilab 16 km "SiteFiller"
- (LEP3)

The need for a Higgs factory is widely recognized by the community.

Luminosity in circular colliders (head-on):

$$\#$$
 particles/bunch $\mathcal{L} = rac{1}{4\pi} rac{N^2}{\sigma_x^* \sigma_y^*} n_b f_{rev} R_{hg} \leftarrow ext{Hourglass}$

Beam-beam tune shift:

$$\chi_z = rac{r_e}{2\pi\gamma}rac{N}{(\sigma_x^*+\sigma_y^*)}\sqrt{rac{eta_z^*}{\epsilon_z}} = rac{r_e}{2\pi\gamma}rac{N}{\sigma_x^*(1+r)}\sqrt{rac{eta_z^*}{\epsilon_z}} \ r \equiv \sigma_y^*/\sigma_x^*$$

$$\mathcal{L} = rac{\gamma}{2r_e}rac{\mathcal{I}}{e}(1+r)rac{\chi_y}{eta_y^*}R_{hg}$$

At high energy, luminosity in a e^+e^- circular collider is limited by the radiated power

$$W=rac{e\gamma^4}{3\epsilon_0}rac{\mathcal{I}}{
ho_b}$$

Luminosity in terms of beam-bean parameter and radiated power per beam (for $r\ll 1$)

$$\mathcal{L} = rac{3}{2} rac{\epsilon_0}{e^2 r_e \gamma^3} rac{\chi_y}{eta_y^*}
ho_b W R_{hg}$$

Once the allowed radiated power is fixed \mathcal{L} may be increased only by

- decreasing β_y^*
 - limited by chromaticity budget, magnets aperture...
- going to the beam-beam limit, but
 - single bunch instabilities.
 - lifetime issues for high energy high luminosity e^+e^- colliders
 - * Bhabha scattering
 - * Beamstrahlung

Lifetime issues call for top-up injection: large average luminosity, but costly.

Fermilab "SiteFiller" Higgs factory

Design strategy for a Higgs factory at Fermilab with a circumference of 16 Km ("SiteFiller"):

- Total synchrotron radiation power limited at 2×50 MW.
- One IP to
 - maximize bending radius in the arc cells;
 - minimize total beam-beam tune shift;
 - reduce chromaticity.

Tentative parameters:

- $\beta_{\boldsymbol{y}}^* = 1 \text{ mm}.$
- 90⁰ FODO cells.
- Large number of particles in few bunches.

Single bunch intensity limits.

TMCI bunch current threshold

$$I_b^{
m TMCI} \propto rac{f_{rev}Q_sE}{e\Sigma_ieta_ik_{\perp i}(\sigma_\ell)}$$

Beam-beam interaction parameter χ .

LEP data analysis suggested an increase of the beam-beam limit with energy as

$$\chi_y^\infty \propto \lambda_d^a ~~a=0.3-0.4$$

with λ_d damping time decrement.

Including RF cavities and resistive wall impedance.

Fermilab "SiteFiller" as Z factory

The same ring may be used at 46 GeV for a Z factory. At lower energy when SR is not the limit, we can go to the beam-beam limit. The damping time increment wrt to the Higgs case is $(120/46)^3$ ie τ_ℓ =213 turns. Assuming the "LEP law" the beam-beam limit is \approx 0.04.

Luminosity in terms of χ_y with $r \approx 0$

$$\mathcal{L} = rac{\pi n_b f_{rev}}{r_e^2} (\gamma \chi_y)^2 \sqrt{rac{eta_x^*}{eta_y^{*3}}} \sqrt{\epsilon_x \epsilon_y} R_{hg}$$

Possible knobs for increasing luminosity:

- Increase of horizontal emittance, assuming the IR is unchanged, by
 - introducing wigglers in dispersive regions, but they increase SR, energy spread and bunch length;
 - modifying the phase advance in the arc cells.
- Lowering β_u^* .
- Large number of bunches.
 - Parasitic collisions: crossing angle? pretzel orbits?

LEP3

An e^+e^- single ring collider in the existing LHC (LEP) 26.7 km tunnel.

"Inexpensive" option for the post HL-LHC era if FCC doesn't fly.

- Tunnel exists.
- LHC cryoplants at hand.
- CMS (and ATLAS?) detectors could be (to some extent) reused.
- Cohabitation with LHC (and proposed LHeC): it seemed possible (at performance cost).

It did not receive much support in both 2013 and 2020 ESPPU (source: F. Zimmermann).

Mainly designed as a Higgs factory, could work also as a $oldsymbol{Z}$ and $oldsymbol{W}$ factory.

- Total synchrotron radiation power limited by design at 2×50 MW.
 - With a 50% wall-plug to beam efficiency it requires 200 MW.
 - Maximum current ≈ 7.2 mA to be distributed in the smallest number of bunches.
- Top-up injection: second ring in the same tunnel possibly on top of the LHC with light-weight magnets.
- 1.3 GHz RF ILC-like for short bunches allows decreasing β_u^* .
- Larger over-voltage wrt LEP to increase momentum RF acceptance.
- 20 MV/m assumed: RF section length about 20% longer wrt LEP2 (104.5 GeV)
 - cryo power about as in LHC.
- Nb₃Sn for IR superconducting quads.
- Arc optics

9/18

- shorter FODO cells allowing lower ϵ_x wrt LEP;
- small α_p .

Main reference: ATS/Note/2012/062 TECH (LEP3 submission to 2013 ESPPU).

Established technologies, but not yet a mature design. Needed further investigations (similar for the SiteFiller):

- Beam dynamics and large momentum acceptance with 1 mm $\beta_{\boldsymbol{y}}^*$.
- Input power couplers handling 173 kW/cavity RF power in CW.
- ullet HOM heating in presence of large N in short bunches.
- Management of the 100 MW SR (E_c =1.4 MeV).
- Accelerator ring: optics, beam dynamics and operation.

In the meantime some aspects have been revisited. In particular:

- 400 MHz instead of 1.3 GHz.
- Large angle crossing with crab waist scheme.
- Impossibility of hosting all rings in the existing tunnel keeping LHC in place and...
 - even 2 machines in the 3.8 m diameter tunnel are currently questioned.

	LEP3 (ATS Note)	SiteFiller	FCCee (CDR 2018)
Circumference [km]	26.7	16	98
Beam current [mA]	7.2	5.	29
$N~[10^{11}]$	10	8.3	1.8
n_b	4	2	328
#IPs	2	1	2
$oldsymbol{eta_x^*}$ [m]	0.2	0.2	0.3
$oldsymbol{eta_y^*}$ [mm]	1	1	1
$\epsilon_{m{x}}$ [nm]	25	21	0.63
$\epsilon_{m{y}}$ [nm]	0.1	0.05	0.001
σ_ℓ [mm] (SR)	2.3	2.9	3.2
b-b tune shift/IP	0.09/0.08	0.075/0.11	0.012/0.12
RF frequency [MHz]	1300	650	400
RF voltage [GV]	12	12	2
η [%]	±4 (RF)	±3 (RF)	±1.7 (DA)
$ au_{bs}[min]$	>17 (*)	9 (**), 36 (***)	18
$ au_{Bhabha}[min]$	18	8.7	38
$\mathcal{L}/IP~[10^{34}~cm^{-2}s^{-1}~]$	1.1 (****)	1.0 (****)	8.5

(*) from HF2012 Zanetti simulations with $\eta=\pm4\%$. (**) Using A. Bogomyagkov et al. Eq.19 with $\eta=\pm3\%$. (***) Zanetti simulations with $\eta = \pm 3\%$. (****) Head-on, hourglass included.

	LEP3	SiteFiller
Time between collisions $[\mu$ s $]$	22	26
Beam energy range [GeV]	45-120	45-120
Stored energy/beam [MJ]		0.03
Total lost power (both beam)[MW]	100	100
Electrical consumption (total)		$1500~\mathrm{GW/h}$ per year
Lenght of accelerators [km]	2×26.7	2×16×+16=48 (*)
Length of all tunnels [km]	27	16
Length of new tunnels [km]	0	16
# of magnets		4488
# of cavities		375 (**)
costs (***)	\gtrsim 3 Billions CHF	≈ 5 Billions USD (****)
Timeline		
time to CDR [years]		3
Time to TDR [years]		5
Construction time [years]	7-10, starting after 2042	7

^(*) Assuming 2 booster rings. (**) RF cavities must be distributed. (***) Careful by comparing European and US estimates from different sources! (****) Very preliminary, based on scaling rules!

(Personal) Conclusions

SiteFiller luminosity may be improved by

- lowering emittance arc cells;
- pushing beam-beam tune shift.

However

- Having fixed the ring size for purely contingent reasons limits the SF performance and set additional challenges as:
 - large emittance;
 - large photon critical energy: \approx 2 MeV at 120 GeV;
 - high SR load: \approx 15 kW/m for both beams at 120 GeV;
 - large sawtooth effect.
- The need for infrastructures not at hand at Fermilab (e^+ source, e^\pm injector chain) results in higher costs wrt to the "similar-scale" LEP3.
 - But if LHC tunnel can't host collider and booster, saving is reduced.
 - Timeline may play in favor of the SiteFiller.

For both machine it must be demonstrated that large momentum acceptance and DA (for top-up injection) can be met (in addition to technical challenges).

Acknowledgments

Thanks to

- F. Zimmermann for providing LEP3 references and news.
- T. Sen for sharing results on his investigations on the SiteFiller.

Back-up slides

Marco Zanetti @ HF2012

- Scan relevant BS parameters:
 - B*x to scale horizontal beam dimension
 - Number of particle per bunch
- BS lifetime for nominal parameters (assuming η =0.04):
 - LEP3: >~ 30 min
 - TLEP-H: ~day
 - >4h for η =0.03, ~4 min for η =0.02

Marco Zanetti (2012) for SiteFiller

ΔE/E _{accept}	Lifetime [sec]
0.01	0.12
0.02	12.0
0.03	2149
0.04	Inf

Higgs e+ e- Collider Parameters

Circumference [km]	16.0
SR power, both beams [MW]	100
Energy [GeV]	120
Hourglass factor	0.695
β_x^* , β_y^* [cm]	20, 0.1
Particles/bunch	8.3x 10 ¹¹
Number of bunches	2
Beam-beam parameters ξ_x , ξ_y	0.077, 0.100
Beam current [mA]	5.
Emittances [nm]	21, 0.05
Energy lost/turn [GeV]	10.0
Rf voltage [GV]	12.1
Damping time (τ _s) [turns]	12
Bremsstrahlung lifetime [mins]	8.7
Luminosity [cm ⁻² sec ⁻¹]	0.99x 10 ³⁴

Z factory parameters

	Values
Circumference [km]	16.0
Energy [GeV]	46.0
Luminosity [cm ⁻² sec ⁻¹]	6.3×10^{34}
SR power, both beams [MW]	60
β_x^* , β_y^* [cm]	20, 0.1
Particles/bunch	1.7×10^{11}
Number of bunches	279
Beam-beam parameters ξ_x , ξ_y	0.032, 0.045
Beam current [A]	0.14
Emittances [nm]	26.1, 0.065
Energy lost/turn [MeV]	216
Rf voltage [MV]	241
Damping time (τ_s) [turns]	213
Bremsstrahlung lifetime [hrs]	0.62
Beamstrahlung upsilon parameter	0.29x10 ⁻⁴

T. Sen

e+e- ring at Fermilab

